The Skin–Brain Connection Hypothesis, Bringing Together CCL27-Mediated T-Cell Activation in the Skin and Neural Cell Damage in the Adult Brain
نویسندگان
چکیده
Recent discovery of an association of low serum melatonin levels with relapse in multiple sclerosis (MS) opens a new horizon in understanding the pathogenesis of this disease. Skin is the main organ for sensing seasonal changes in duration of sunlight exposure. Level of melatonin production is dependent on light exposure. The molecular mechanisms connecting peripheral (skin) sensing of the light exposure and developing brain inflammation (MS) have not been investigated. We hypothesize that there is a connection between the reaction of skin to seasonal changes in sunlight exposure and the risk of MS and that seasonal changes in light exposure cause peripheral (skin) inflammation, the production of cytokines, and the subsequent inflammation of the brain. In skin of genetically predisposed individuals, cytokines attract memory cutaneous lymphocyte-associated antigen (CLA+) T lymphocytes, which then maintain local inflammation. Once inflammation is resolved, CLA+ lymphocytes return to the circulation, some of which eventually migrate to the brain. Once in the brain these lymphocytes may initiate an inflammatory response. Our observation of increased CC chemokine ligand 27 (CCL27) in MS sera supports the involvement of skin in the pathogenesis of MS. Further, the importance of our data is that CCL27 is a chemokine released by activated keratinocytes, which is upregulated in inflamed skin. We propose that high serum levels of CCL27 in MS are the result of skin inflammation due to exposure to seasonal changes in the sunlight. Future studies will determine whether CCL27 serum level correlates with seasonal changes in sunlight exposure, MS exacerbation, and skin inflammation.
منابع مشابه
P91: Auto Graft Transplantation of Adult Human Neural Stem Cells in Treatment of Traumatic Brain Injury as a Hypothesis
Traumatic brain injury (TBI) leading to 5 million deaths annually is 1 of the 5 major causes of morbidity and mortality worldwide. In Iran, accidents are the main cause of death in youth as well as a dominant factor in reducing quality of life. In developing countries TBI incidence as one of the worst consequences of these accidents is growing due to wide use of motor-vehicles. Therapeutic stra...
متن کاملActivation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells
Objective(s): High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt sig...
متن کاملP 67: The Role of Neuroinflammation in Dysfunction of Adult Hippocampal Neurogenesis
Neuroinflammation as a protective mechanism for repairing tissue damage in the central nervous system (CNS), has been classified into two types: acute and chronic. It is characterized by the activation of microglia and astrocytes and the increase levels of different chemokines and cytokines. Neuroinflammation can be harmful, and it is a common pathological feature in neurodegenerative and psych...
متن کاملHigh neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids
Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...
متن کاملP 154: The Role of Inflammation in the Seizure Occurrence
Most common hypotheses of seizure initiation are increased neural excitation, decreased inhibition or both. But, the conditions that lead to these activation states not to be clear yet. Recent studies challenge traditional concepts and indicate new evidence that a key epileptogenic process may actually begin in the blood vessel. Seizures could be initiate by a variety of insults to the brain, s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016